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Deciding algebraicity

Abel’s problem

Let u € Q(x), decide if the nonzero solutions of y' = uy are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch’s algorithm. |

Fuchs' problem

Let £ = a, (%)’W—-'- + 31% + ao, a; € Z[x].
Decide if the differential equation Ly = 0 has a basis of algebraic solutions.

[Singer, 1980], relying on Risch's algorithm. J
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A local-global approach

d\" d
c_an<dx> teota - ta=0 acZk.

= For all prime numbers p, consider £, = £ mod p.

Grothendieck's p-curvature conjecture
All solutions of Ly = 0 are algebraic over Q(x) if and only if for almost all prime
numbers p, the p-curvature of £ vanishes.

Attach to £, an Fp(x)-linear map called the p-curvature. |

Theorem (Cartier's Lemma)
The p-curvature is zero if and only if L,y = 0 has a basis of algebraic solutions.
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The p-curvature conjecture

Grothendieck's p-curvature conjecture

All solutions of Ly = 0 are algebraic over Q(x) if and only if for almost all primes p,
the p-curvature of £ vanishes.

= Picard-Fuchs equations [Katz, 1972], order one [Honda, 1974; Chudnovsky?,
1985], g-difference equations [Di Vizio, 2001],...
— Observation: when the solution is not algebraic, p-curvatures are often nonzero.

For (x2+ 1)y’ +y = 0, p-curvatures are X47]:F1 € Fa(x), —X%H € F3(x).

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y' = 2y with a, b € Q[x].
b

= Not a decision procedure: infinitely many conditions to check.
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Fact: If y' = 7y has algebraic solutions, then deg(a) < deg(b) and b is squarefree. J
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First-order differential equations over Q(x)

871

X_Bi.

,_a a_
y _Eya aabEQ[XL E_Z

i

Fact: If y' = 7y has algebraic solutions, then deg(a) < deg(b) and b is squarefree. |

a 1 i i
L= i CET T y = exp(arctan(x)) is not algebraic.

Fact: y = exp (f i /3,> H(x — B;i)%i is algebraic if and only if Vi, a; € Q. J
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First-order differential equations over [F,(x)

Theorem (Jacobson, 1937)

Let u € Fp(x), the p-curvature of equation y' = uy is uP~%) + uP.

= No closed formula for higher order.

= If the p-curvature vanishes, then u has the form Z ai, Bi € Fp.

(e
_61

vanishes if and only if ' o € Fp.
(X - /31)

i
= Let u=3—— its p-curvature is Z
i X_/BI

The proof of Honda's Theorem is reduced to proving that for a single o € Q, «v is
rational if and only if & mod p € ), for almost all primes p.

= o mod p is a root of m, mod p, with 7, € Z[x] the minimal polynomial of «.

YExcept for primes p dividing 8; — Bi, i #j.
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Kronecker's theorem

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let R € Q[x] be irreducible. If for almost all prime numbers p the polynomial R mod p
has a root in IF,, then R has a root in Q, hence is linear.

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y' = £y with a, b € Q[x].

Proof: Honda's Theorem is equivalent to Kronecker's Theorem. J

Theorem (Equivalent statement of Kronecker's Theorem)

Let R € Q[x]. If for almost all prime numbers p the reduction of R modulo p splits
completely over F,, then R splits completely over Q.




Effective Kronecker

Theorem (Chudnovsky?, 1985)

Let R € Z|w] with leading coefficient A € Z. There exists o € N such that R splits
completely over Q if and only if R mod p splits completely over I, for all primes p:
= not dividing A,

= at most o.




Effective Kronecker

Theorem (Chudnovsky2, 1985; )

Let R € Z[w] with leading coefficient A € Z, and let t(A) =[], a pt/(P=1).
Let B € R be an upper bound on the modulus of all complex roots ofR
Let M = [2.826 - A3 t(A)]| and N == [10BM].

Then R splits completely over Q if and only if R mod p splits completely over F,, for
all primes p:

= pot dividing A,
= at most 0 = (2M + 1)N + 2M.
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Effective Kronecker

Theorem (Chudnovsky?, 1985; Fiirnsinn-P., 2025+ )

Let R € Z[w] with leading coefficient A € Z, and let t(A) =[], a pt/(P=1).

Let B € R be an upper bound on the modulus of all complex roots ofR

Let M = [2.826 - A3 t(A)]| and N == [10BM].

Then R splits completely over Q if and only if R mod p splits completely over IF,, for
all primes p:

= not dividing A,

= at most o = (2M + 1)N + 2M.

Criterion: If p <o, p /A and R mod p does not split completely in F, then R does
not split completely in Q.
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Padé approximation

Given power series fi, ..., f, € Q[[x]] and n,s € N, find polynomials P; € Q[x] such
that deg(P;) < n and

Pifi + - -+ P.f, € x°Q[[x]].

= r(n+ 1) indeterminates, s linear homogeneous equations = s = r(n+ 1) — 1.
[Hermite, 1873] e is transcendental, [Padé], [Mahler, 1931].

Algebraicity criterion: With f; = /=1 f is algebraic if and only if the remainder
P1 + Pyf + --- 4 P,f™1 vanishes for large n, r. J
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Proof. Assume R has a root a ¢ Q. Write L == Q(«).
We know explicit Padé approximants Pj(z) € L|z], deg(P;) < N, with x =1 —z

Po(z) + P1(z)(1 — 2)* + -+ - + Pom(2)(1 — z)2MO‘ =gz° + O(ZUH)

NI12M+1

with o = QM+ 1)N +2M, g = — Q"
o!
For all v € L, ‘den(fy)[L:Q] NormL/Q(’y)‘ > 1.

Construct yyn € L, ymn # 0, satisfying
XMV .y (m);

den(’YM,N)[L:Q] NormL/@(fyM’N))
= X(M) — 0.
M—00
For M >>0, N >> M, !den(VM’N)[L:Q] NormL/@(’yM’N)| <1, hence a € Q.
Where do we use the fact that o mod p € F,?
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Theorem (Rothstein-Trager, 1976)

Let a, b € Q[x] with b squarefree. The roots of the polynomial
resx(b,a — wb') € Q[w] are exactly the residues of the rational function a/b.

» R :=resy(b,a— wb’) € Q[w] is called Rothstein-Trager's resultant.



Effective Honda

Corollary [Chudnovsky2, 1985; Firnsinn-P., 2025+ ]

Let a, b € Z[x], deg(a) < d := deg(b) and R := res,(b,a — wb') € Q[w],

with leading coefficient A := res,(b, —b'), t = [[,a pt/(P=1),

Let B € R be an upper bound on the modulus of all complex roots of R.

Let M == [2.826- A3 t(A)] and N == [10BM].

All solutions of y' = 7y are algebraic if and only if the p-curvatures of the differential
equation vanish for all primes p:

= not dividing A;

= at most 0 = (2M + 1)N + 2M.
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A second algorithm : polynomial factorization

Input a, b € Z[x] with b squarefree and deg(a) < deg(b).
Output The nature (algebraic or transcendental) of exp( [ 2).

1. R =resy(b,a —wb') € Q[w]; O(d?) bit operations
2. factor R in Q[w]; O(d®)
3. if R splits completely returns algebraic, else return transcendental.

Theorem (van Hoeij-Novocin, 2012)

Factorization of a monic univariate polynomial R € Z[w] of degree d, whose
coefficients are bounded by A € N can be done in

O(d® + d°log(A))

bit operations where the notation O hides logarithmic factors log(d) and log(log A).
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Algorithmic

= How to compute p-curvatures? [Bostan-Schost, 2009], [Pages, 2021]

a b o Output
2x +1 x>+ x+1 3126 algebraic a=1b
3x —4 2x% — 6x + 4 | 344965 algebraic
x>24+2x—1| x34+x+1 | 276012 | transcendental | 5-curvature # 0
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Let R € Z[w], L be its splitting field with integer ring Oy, ¢ == [L: Q].

Fact: Let p € Z, the factorization pattern of R mod p in Fp[w] is the same as the
factorization pattern of p in L. J

= R =w?+1 factors in Fp[w] iff p = 1[4] (or p = 2).

Problem: Obtain an upper bound on the first prime p € Z that does not split in L. J

Theorem (Vaaler-Voloch, 2000)

Let L/Q be a Galois extension of degree ¢ and discriminant A;. Assume GRH. If
A > texp(2(¢ — 1) max(105,25log £)), then there exists a prime p € Z such that:

1
»= p [AL; = p does not split completely in L; = p <2602A;“".
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~ y' = uy with u € Q(x) — algebraic coefficient u € Q(x) [Chudnovsky, 1985].

~ Effective versions of all proved cases of the p-curvature conjecture.

~> Link with the smallest prime that does not split.
Thank you.



