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Abel’s problem

Let u ∈ Q(x), decide if the nonzero solutions of y ′ = uy are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch’s algorithm.

Fuchs’ problem
Let L = an

( d
dx
)n

+ · · ·+ a1
d
dx + a0, ai ∈ Z[x ].

Decide if the differential equation Ly = 0 has a basis of algebraic solutions.

[Singer, 1980], relying on Risch’s algorithm.
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Grothendieck’s p-curvature conjecture
All solutions of Ly = 0 are algebraic over Q(x) if and only if for almost all prime
numbers p, the p-curvature of L vanishes.
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The p-curvature conjecture

Grothendieck’s p-curvature conjecture
All solutions of Ly = 0 are algebraic over Q(x) if and only if for almost all primes p,
the p-curvature of L vanishes.

• Picard-Fuchs equations [Katz, 1972], order one [Honda, 1974; Chudnovsky2, 1985],
q-difference equations [Di Vizio, 2001],...
→ Observation: when the solution is not algebraic, p-curvatures are often nonzero.
For (x2 + 1)y ′ + y = 0, p-curvatures are 1

x4+1 ∈ F2(x), − 1
x6+1 ∈ F3(x).

Theorem (Honda, 1974)
The p-curvature conjecture holds for equations y ′ = a

b y with a, b ∈ Q[x ].

• Not a decision procedure: infinitely many conditions to check.
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First-order differential equations over Q(x)

y ′ =
a
b y , a, b ∈ Q[x ], a

b =
∑

i

αi
x − βi

.

Fact: If y ′ = a
b y has algebraic solutions, then deg(a) < deg(b) and b is squarefree.

→
a
b =

1
x2 + 1 =

i
2(x + i)−

i
2(x − i), y = exp(arctan(x)) is not algebraic.

Fact: y = exp
(∫ ∑

i
αi

x−βi

)
=

∏
i
(x − βi)

αi is algebraic if and only if ∀i , αi ∈ Q.
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Let u ∈ Fp(x), the p-curvature of equation y ′ = uy is u(p−1) + up .

• No closed formula for higher order.

• If the p-curvature vanishes, then u has the form
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• Let u =
∑
i

αi

x − βi
, its p-curvature is

∑
i

αp
i − αi

(x − βi)p , vanishes if and only if 1 αi ∈ Fp .

The proof of Honda’s Theorem is reduced to proving that for a single α ∈ Q, α is
rational if and only if α mod p ∈ Fp for almost all primes p.

• α mod p is a root of πα mod p, with πα ∈ Z[x ] the minimal polynomial of α.
1Except for primes p dividing βi − βj , i 6= j.
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Theorem (Kronecker, 1880; Chebotarev, 1926)
Let R ∈ Q[x ] be irreducible. If for almost all prime numbers p the polynomial R mod p
has a root in Fp , then R has a root in Q, hence is linear.

Theorem (Honda, 1974)
The p-curvature conjecture holds for equations y ′ = a

b y with a, b ∈ Q[x ].

Proof: Honda’s Theorem is equivalent to Kronecker’s Theorem.

Theorem (Equivalent statement of Kronecker’s Theorem)
Let R ∈ Q[x ]. If for almost all prime numbers p the reduction of R modulo p splits
completely over Fp , then R splits completely over Q.
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Effective Kronecker

Theorem (Chudnovsky2, 1985)
Let R ∈ Z[w ] with leading coefficient ∆ ∈ Z. There exists σ ∈ N such that R splits
completely over Q if and only if R mod p splits completely over Fp for all primes p:
• not dividing ∆,
• at most σ.
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Let R ∈ Z[w ] with leading coefficient ∆ ∈ Z, and let t(∆) :=
∏

p|∆ p1/(p−1).
Let B ∈ R be an upper bound on the modulus of all complex roots of R.
Let M :=

⌈
2.826 ·∆3 · t(∆)

⌉
and N := d10BMe.

Then R splits completely over Q if and only if R mod p splits completely over Fp for
all primes p:
• not dividing ∆,
• at most σ := (2M + 1)N + 2M.

Criterion: If p ≤ σ, p 6 | ∆ and R mod p does not split completely in Fp , then R does
not split completely in Q.
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Given power series f1, . . . , fr ∈ Q[[x ]] and n, s ∈ N, find polynomials Pi ∈ Q[x ] such
that deg(Pi) ≤ n and

P1f1 + · · ·+ Pr fr ∈ x sQ[[x ]].

• r(n + 1) indeterminates, s linear homogeneous equations ⇒ s = r(n + 1)− 1.
[Hermite, 1873] e is transcendental, [Padé], [Mahler, 1931].

Algebraicity criterion: With fi = f i−1, f is algebraic if and only if the remainder
P1 + P2f + · · ·+ Pr f r−1 vanishes for large n, r .
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Chudnovskys’ proof

Proof.

Assume R has a root α /∈ Q. Write L := Q(α).

We know explicit Padé approximants Pi(z) ∈ L[z], deg(Pi) ≤ N, with x = 1− z

P0(z) + P1(z)(1− z)α + · · ·+ P2M(z)(1− z)2Mα = gzσ + O(zσ+1)

with σ = (2M + 1)N + 2M, g =
N!2M+1

σ!
∈ Q∗.

For all γ ∈ L,
∣∣den(γ)[L:Q]NormL/Q(γ)

∣∣ ≥ 1.
Construct γM,N ∈ L, γM,N 6= 0, satisfying

•
∣∣∣den(γM,N)

[L:Q]NormL/Q(γM,N)
∣∣∣ ∼

N>>M>>0
X(M)N · Y (M);

• X(M) →
M→∞

0.
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Effectivity

Lemma
Let k, `, r ∈ N, p 6 | den(α) a rational prime, p a prime ideal of Q(α) above p.

i. If α mod p ∈ Fp , then p does not divide the denominator of
(kα+`

r
)
.

ii. If α mod p /∈ Fp and p divides the denominator of
(kα+`

r
)
, then p ≤ r .
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)
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• Such binomials appear in the Padé approximation with 0 ≤ r ≤ σ.
• Explicit error terms, inequalities instead of asymptotic equivalents.

Theorem (Rothstein-Trager, 1976)
Let a, b ∈ Q[x ] with b squarefree. The roots of the polynomial
resx(b, a − wb′) ∈ Q[w ] are exactly the residues of the rational function a/b.

• R := resx(b, a − wb′) ∈ Q[w ] is called Rothstein-Trager’s resultant.
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Effective Honda

Corollary [Chudnovsky2, 1985; Fürnsinn-P., 2025+]
Let a, b ∈ Z[x ], deg(a) < d := deg(b) and R := resx(b, a − wb′) ∈ Q[w ],
with leading coefficient ∆ := resx(b,−b′), t :=

∏
p|∆ p1/(p−1).

Let B ∈ R be an upper bound on the modulus of all complex roots of R .
Let M :=

⌈
2.826 ·∆3 · t(∆)

⌉
and N := d10BMe.

All solutions of y ′ = a
b y are algebraic if and only if the p-curvatures of the differential

equation vanish for all primes p:
• not dividing ∆;
• at most σ := (2M + 1)N + 2M.
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First algorithm and complexity

Input a, b ∈ Z[x ] with b squarefree and deg(a) < deg(b).
Output The nature (algebraic or transcendental) of exp(

∫ a
b ).

1. R := resx(b, a − wb′) ∈ Q[w ], ∆, t,B;
2. M :=

⌈
2.826 ·∆3 · t(∆)

⌉
, N := 10BM, σ := (2M + 1)N + 2M, p ← 2;

3. while p ≤ σ:

Õ(d2) bit operations [Bostan-Schost, 2009]

i. if p 6 | ∆, then compute the p-curvature;
ii. if p-curvature 6= 0, then return transcendental, else p ← nextprime(p);

4. return algebraic.
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Õ(d2) bit operations [Bostan-Schost, 2009]

i. if p 6 | ∆, then compute the p-curvature;
ii. if p-curvature 6= 0, then return transcendental, else p ← nextprime(p);

4. return algebraic.



14/18

First algorithm and complexity

Input a, b ∈ Z[x ] with b squarefree and deg(a) < deg(b).
Output The nature (algebraic or transcendental) of exp(

∫ a
b ).

1. R := resx(b, a − wb′) ∈ Q[w ], ∆, t,B; Õ(d2) bit operations
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A second algorithm : polynomial factorization

Input a, b ∈ Z[x ] with b squarefree and deg(a) < deg(b).
Output The nature (algebraic or transcendental) of exp(

∫ a
b ).

1. R := resx(b, a − wb′) ∈ Q[w ];
2. factor R in Q[w ];
3. if R splits completely returns algebraic, else return transcendental.

Theorem (van Hoeij-Novocin, 2012)
Factorization of a monic univariate polynomial R ∈ Z[w ] of degree d, whose
coefficients are bounded by A ∈ N can be done in

Õ(d6 + d5 log(A))

bit operations where the notation Õ hides logarithmic factors log(d) and log(logA).
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Õ(d6 + d5 log(A))
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Algorithmic

• How to compute p-curvatures? [Bostan-Schost, 2009], [Pagès, 2021]

a b σ Output
2x + 1 x2 + x + 1 3126 algebraic a = b′

3x − 4 2x2 − 6x + 4 344965 algebraic
x2 + 2x − 1 x3 + x + 1 276012 transcendental 5-curvature 6= 0
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Let R ∈ Z[w ], L be its splitting field with integer ring OL, ` := [L : Q].

Fact: Let p ∈ Z, the factorization pattern of R mod p in Fp[w ] is the same as the
factorization pattern of p in L.

• R = w2 + 1 factors in Fp[w ] iff p ≡ 1[4] (or p = 2).

Problem: Obtain an upper bound on the first prime p ∈ Z that does not split in L.

Theorem (Vaaler-Voloch, 2000)
Let L/Q be a Galois extension of degree ` and discriminant ∆L. Assume GRH. If
∆L ≥ 1

8 exp(2(`− 1)max(105, 25 log `)), then there exists a prime p ∈ Z such that:

• p 6 | ∆L; • p does not split completely in L; • p ≤ 26`2∆
1

2(`−1)
L .
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Perspectives

 y ′ = uy with u ∈ Q(x)

→ algebraic coefficient u ∈ Q(x) [Chudnovsky, 1985].

 Effective versions of all proved cases of the p-curvature conjecture.

 Link with the smallest prime that does not split.
Thank you.
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